前言智能交通系统是车辆有序运行的重要保障,道路环境感知技术是智能交通系统的基础。传感器感知并采集周围环境数据在实现无人驾驶的各个阶段都不可或缺。多传感器信息融合(Multi-Sensor Information Fusion,MSIF)就是利用计算机科学技术将来自各个传感器或多源头的信息和数据在预定的规则下进行数学分析加上信息综合,以完成相应的决策和必要的估算而执行的信息处理过程。在这个过程中要充分地利用多源数据进行合理操作与使用,信息融合不但运用了多个传感器互相协同工作的优势,并且运用算法综合处理了大量其它信息源数据,使得整个传感器系统更加智能,信息融合的最终目的就是基于各个传感器获得的分离观测信息,对信息多级别、多维度分析综合之后推理出更多有价值的信息,对车辆的行为进行决策。在这个过程中,多传感器信息融合算法有着不可替代的决策作用,所有的信息汇总之后经由算法得出最终的决策判断。近年来随着芯片、计算机科学技术的快速发展,硬件算力的提升极大促进无人驾驶算法的发展,本文从多传感器的硬件配合应用出发,重点介绍近年来用于无人驾驶的信息融合算法的研究与进展,提出基于机器学习的算法研究是未来的发展趋势。